Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2
نویسندگان
چکیده
Recent demonstrations of controlled switching between different ordered macroscopic states by impulsive electromagnetic perturbations in complex materials have opened some fundamental questions on the mechanisms responsible for such remarkable behavior. Here we experimentally address the question of whether two-dimensional (2D) Mott physics can be responsible for unusual switching between states of different electronic order in the layered dichalcogenide 1T-TaS2, or it is a result of subtle inter-layer "orbitronic" re-ordering of its stacking structure. We report on in-plane (IP) and out-of-plane (OP) resistance switching by current-pulse injection at low temperatures. Elucidating the controversial theoretical predictions, we also report on measurements of the anisotropy of the electrical resistivity below room temperature. From the T-dependence of ρ⊥ and ρ||, we surmise that the resistivity is more consistent with collective motion than single particle diffusive or band-like transport. The relaxation dynamics of the metastable state for both IP and OP electron transport are seemingly governed by the same mesoscopic quantum re-ordering process. We conclude that 1T-TaS2 shows resistance switching arising from an interplay of both IP and OP correlations.
منابع مشابه
Memristive phase switching in two-dimensional 1T-TaS2 crystals
Scaling down materials to an atomic-layer level produces rich physical and chemical properties as exemplified in various two-dimensional (2D) crystals including graphene, transition metal dichalcogenides, and black phosphorus. This is caused by the dramatic modification of electronic band structures. In such reduced dimensions, the electron correlation effects are also expected to be significan...
متن کاملNanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2
The controllability over strongly correlated electronic states promises unique electronic devices. A recent example is an optically induced ultrafast switching device based on the transition between the correlated Mott insulating state and a metallic state of a transition metal dichalcogenide 1T-TaS2. However, the electronic switching has been challenging and the nature of the transition has be...
متن کاملElectrically driven reversible insulator-metal phase transition in 1T-TaS2.
In this work, we demonstrate abrupt, reversible switching of resistance in 1T-TaS2 using dc and pulsed sources, corresponding to an insulator-metal transition between the insulating Mott and equilibrium metallic states. This transition occurs at a constant critical resistivity of 7 mohm-cm regardless of temperature or bias conditions and the transition time is significantly smaller than abrupt ...
متن کاملControlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2
Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a...
متن کاملA charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature.
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017